dendrite

nucleus

soma

myelin

Scwann cell
& node of Ranvier




In 1855, Lord Kelvin develpped the mathematical description of the
way electric current flows in a "core conductor" consisting of a
cylindrical insulator separating two conducting media, an inner "core"
conductor and an external surrounding one. The same equivalent
electrical circuit and mathematics apply to nerve fibers, both
unmyelinate (Figure 4A) and myelinated (Figire 4B).
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Table 6-1  The diameter of frog axons and the presence or absence of
myelination control the conduction velocity.

Fiber type Average axon diameter (pm) Conduction velocity (m-s™1)
Myelinated fibers
Aa 18.5 42
ApB 14.0 25
Avy 11.0 17
B Approximately 3.0 4.2
Unmyelinated fibers
C 2.5 0.4-0.5

Source: Erlanger and Gasser, 1937.
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Increased conductivity of the core

An additional method for reducing r,, 1s to provide the core conductor
with more highly-conducting medium. This has been the case for marine
invertebrates, which, in order to maintain body fluids isotonic with the
surrounding sea water, maintain a high axoplasmic 1onic strength giving
a specific resistance of 35 Q cm (Hodgkin and Huxley 1952) or above.
With much lower 10nic strengths in vertebrates and non-marine
invertebrates, axoplasmic specific resistances are typically 3-fold higher.
so a marine invertebrate axon of a given size can conduct almost twice
as fast. This principle has been carried even further by penaeid shrimp,
in which the heavy myelin sheath forms a tube surrounding a large
extracellular space (Xu and Terakawa, 1999). Instead of axoplasm,
much of the interior of the tube 1s filled with fluid having conductivity
close to that of sea water as the core conductor, which 1n turn 1s
predicted to increase conduction speed by 25% above that of squid

axons of comparable diameter.
11



Extracellular space (ex) enclosed in a myelin-lined (my) tube including a much reduced axon (ax) from a penaeid shrimp (Litopenaeus vannamei). Transmission electron
. micrograph of a cross-section of the ventral nerve cord by Monica Qrcine,

The specialized perineurium of insects provides their nervous system
with an assured supply of the necessary sodium 1ons required for
reliable conduction speeds in the face of highly variable and potentially

disruptive 10nic compositions of hemolymph (Treherne and Schofield,
1981).
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Fiber bathed in saline containing curare
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Table 6-2  Typical small neurotransmitters, their structures, and functions

Neurotransmitter Typical eftects® Structure
Acetylcholine Fast excitation; O CH,
(ACh) slow inhibition H,C— (lg_ 0 CHZCH2—1\|I+— CH,
i,
Glycine Fast inhibition H
) +H3N—(|3—H
(llOO‘
Fast inhibition; *H,N—CH,—CH,—CH,—COO"

'y-Aminobutyr{c-; 5
(GABA)

—_—

slow inhibition

Glutamate Fast excitation; Ili
(Glu) slow change in +*H,N—C—CH,—CH,—C0O"
postsynaptic ) B
metabolism COO~

*Notice that the effect of a neurotransmitter depends on the properties of the postsynaptic cell. For most neurotransmitters,
however, it is possible to identify their most probable effect.
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Table 6-2  Typical small neurotransmitters, their structures, and functions

Neurotransmitter Typical effects® Structure
Norepinephrine Slow excitation; (l)H
e . . . o, . HO
(Nor-epi) slow inhibition CHCH,NH,
HO
Dopami Differs witl HO
opamine iffers W1 1 CH.CH.NHL
location but causes S
slow postsynaptic HO /N H,
effects CH,
Serotonin Slow excitation or HO CH,
(5:HT = 5- slow inhibition |
hydroxytryptamine) ITI
H

*Notice that the effect of a neurotransmitter depends on the properties of the postsynaptic cell. For most neurotransmitters,
however, it is possible to identify their most probable effect.
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Table 6-2  Typical small neurotransmitters, their structures, and functions

Neurotransmitter Typical effects® Structure

Nitrogen oxide Synaptic

modulation

Adenosine Both fast and slow

triphosphate (ATP) synaptic
x transmission
Histamine Slow modulation HC——C—CH,—CH,—NH,"
/_‘

N NH
™
\C/

|
H

*Notice that the effect of a neurotransmitter depends on the properties of the postsynaptic cell. For most neurotransmitters,
however, it is possible to identify their most probable effect.
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5.9 Learning, Memor
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Repetitious indifferent stimulus

Ca?" channels in presynaptic
neuron prevented from opening

\

| Ca2* influx

l

| Output of neurotransmitter
from presynaptic neuron

!

| Postsynaptic potential in
efferent neuron

}

Reduced behavioral response
to indifferent stimuli

Sensitization (in Aplysia)

Strong or noxious stimulus

!

Release of serotonin from
facilitating interneuron

!

| Cyclic AMP in
presynaptic neuron

!

Blockage of K" channels in
presynaptic neuron

!

Prolongation of action potential
in presynaptic neuron

!

Ca?* channels in presynaptic
neuron kept open longer

!

| Ca?" influx

!

| Output of neurotransmitter )
from presynaptic neuron £

}

| Postsynaptic potential in
efferent neuron

!

Enhanced behavioral
response to mild stimuli




5.9 Learning, Memory, and Sleep

* Mechanisms of memory

— Long-term potentiation (LTP) -- prolonged
increase 1n the strength of existing synaptic
connections following repetitive stimulation

— Long-term memory involves formation of new
synaptic connections

 Immediate early genes (IEGs) govern synthesis of
the proteins that encode long-term memory
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Biogenic amines Cannabinoids

Endogenous ligands OH

HO |
CHCH,NH,

HO
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|
|
|
|
|
|
|
|
|
|
|
|
HO I
CH,CH,NH, |
|
HO :
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|
Exogenous ligands |
I
|
H,CO
’ CH,CH,NH, | QH
l :
H,CO | H
| >\
OCH, | 0 C.H;,
Mescaline : Tetrahydrocannabinol
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Neural Signaling and External Agents

* Neurotoxins that alter synaptic transmission

— Strychnine competes with inhibitory
neurotransmitter, glycine, at postsynaptic
receptors

— Tetanus toxin prevents release of GABA from
inhibitory presynaptic axons

— Both toxins cause unchecked excitation, muscle
spasms and death



Neural Signaling and External Agents

« Alteration of the neuromuscular junction
— Black widow spider venom causes explosive release of ACh
— Curare blocks ACh receptors
— Both cause muscle paralysis and death

— Myasthenia gravis is an autoimmune disease in which antibodies
attack ACh receptors, leading to muscle weakness

— Neostigmine inhibits acetylcholinesterase, prolonging the activity
of ACh in the synapse



